Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38591132

RESUMO

Probiotic-containing fermented dairy foods have the potential to benefit human health, but the importance of the dairy matrix for efficacy remains unclear. We investigated the capacity of Lacticaseibacillus casei BL23 in phosphate-buffered saline (BL23-PBS), BL23-fermented milk (BL23-milk), and milk to modify intestinal and behavioral responses in a Dextran Sodium Sulfate (DSS, 3% w/v) mouse model of colitis. Significant sex-dependent differences were found such that female mice exhibited more severe colitis, greater weight loss, and higher mortality rates. Sex differences were also found for ion transport ex vivo, colonic cytokine and tight junction gene expression, and fecal microbiota composition. Measurements of milk and BL23 effects showed BL23-PBS consumption improved weight recovery in females, while milk resulted in better body weight recovery in males. Occludin and Claudin-2 gene transcript levels indicated barrier function was impaired in males, but BL23-milk was still found to improve colonic ion transport in those mice. Pro-inflammatory and anti-inflammatory gene expression levels were increased in both male and female mice fed BL23, and to a more variable extent, milk, compared to controls. The female mouse fecal microbiota contained high proportions of Akkermansia (average of 18.1%) at baseline, and females exhibited more changes in gut microbiota composition following BL23 and milk intake. Male fecal microbiota harbored significantly more Parasutterella and less Blautia and Roseburia after DSS treatment, independent of BL23 or milk consumption. These findings show the complex interplay between dietary components and sex-dependent responses in mitigating inflammation in the digestive tract.

2.
Cell ; 187(5): 1191-1205.e15, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38366592

RESUMO

Carbohydrate intolerance, commonly linked to the consumption of lactose, fructose, or sorbitol, affects up to 30% of the population in high-income countries. Although sorbitol intolerance is attributed to malabsorption, the underlying mechanism remains unresolved. Here, we show that a history of antibiotic exposure combined with high fat intake triggered long-lasting sorbitol intolerance in mice by reducing Clostridia abundance, which impaired microbial sorbitol catabolism. The restoration of sorbitol catabolism by inoculation with probiotic Escherichia coli protected mice against sorbitol intolerance but did not restore Clostridia abundance. Inoculation with the butyrate producer Anaerostipes caccae restored a normal Clostridia abundance, which protected mice against sorbitol-induced diarrhea even when the probiotic was cleared. Butyrate restored Clostridia abundance by stimulating epithelial peroxisome proliferator-activated receptor-gamma (PPAR-γ) signaling to restore epithelial hypoxia in the colon. Collectively, these mechanistic insights identify microbial sorbitol catabolism as a potential target for approaches for the diagnosis, treatment, and prevention of sorbitol intolerance.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos , Microbioma Gastrointestinal , Sorbitol , Animais , Camundongos , Antibacterianos/farmacologia , Butiratos , Clostridium , Escherichia coli , Sorbitol/metabolismo
3.
JAMA Netw Open ; 6(12): e2346872, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064222

RESUMO

Importance: Systematic reviews and meta-analyses often report conflicting results when assessing evidence for probiotic efficacy, partially because of the lack of understanding of the unique features of probiotic trials. As a consequence, clinical decisions on the use of probiotics have been confusing. Objective: To provide recommendations to improve the quality and consistency of systematic reviews with meta-analyses on probiotics, so evidence-based clinical decisions can be made with more clarity. Evidence Review: For this consensus statement, an updated literature review was conducted (January 1, 2020, to June 30, 2022) to supplement a previously published 2018 literature search to identify areas where probiotic systematic reviews with meta-analyses might be improved. An expert panel of 21 scientists and physicians with experience on writing and reviewing probiotic reviews and meta-analyses was convened and used a modified Delphi method to develop recommendations for future probiotic reviews. Findings: A total of 206 systematic reviews with meta-analysis components on probiotics were screened and representative examples discussed to determine areas for improvement. The expert panel initially identified 36 items that were inconsistently reported or were considered important to consider in probiotic meta-analyses. Of these, a consensus was reached for 9 recommendations to improve the quality of future probiotic meta-analyses. Conclusions and Relevance: In this study, the expert panel reached a consensus on 9 recommendations that should promote improved reporting of probiotic systematic reviews with meta-analyses and, thereby, assist in clinical decisions regarding the use of probiotics.


Assuntos
Probióticos , Humanos , Consenso , Suplementos Nutricionais , Probióticos/uso terapêutico , Revisões Sistemáticas como Assunto , Metanálise como Assunto
4.
Artigo em Inglês | MEDLINE | ID: mdl-38081933

RESUMO

Although fermentation probably originally developed as a means of preserving food substrates, many fermented foods (FFs), and components therein, are thought to have a beneficial effect on various aspects of human health, and gastrointestinal health in particular. It is important that any such perceived benefits are underpinned by rigorous scientific research to understand the associated mechanisms of action. Here, we review in vitro, ex vivo and in vivo studies that have provided insights into the ways in which the specific food components, including FF microorganisms and a variety of bioactives, can contribute to health-promoting activities. More specifically, we draw on representative examples of FFs to discuss the mechanisms through which functional components are produced or enriched during fermentation (such as bioactive peptides and exopolysaccharides), potentially toxic or harmful compounds (such as phytic acid, mycotoxins and lactose) are removed from the food substrate, and how the introduction of fermentation-associated live or dead microorganisms, or components thereof, to the gut can convey health benefits. These studies, combined with a deeper understanding of the microbial composition of a wider variety of modern and traditional FFs, can facilitate the future optimization of FFs, and associated microorganisms, to retain and maximize beneficial effects in the gut.

5.
mBio ; : e0223423, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982640

RESUMO

IMPORTANCE: While quinones are essential for respiratory microorganisms, their importance for microbes that rely on fermentation metabolism is not understood. This gap in knowledge hinders our understanding of anaerobic microbial habitats, such in mammalian digestive tracts and fermented foods. We show that Lactiplantibacillus plantarum, a model fermentative lactic acid bacteria species abundant in human, animal, and insect microbiomes and fermented foods, uses multiple exogenous, environmental quinones as electron shuttles for a hybrid metabolism involving EET. Interestingly, quinones both stimulate this metabolism as well as cause oxidative stress when extracellular electron acceptors are absent. We also found that quinone-producing, lactic acid bacteria species commonly enriched together with L. plantarum in food fermentations accelerate L. plantarum growth and medium acidification through a mainly quinone- and EET-dependent mechanism. Thus, our work provides evidence of quinone cross-feeding as a key ecological feature of anaerobic microbial habitats.

6.
PLoS One ; 18(10): e0292585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824485

RESUMO

Lactobacilli and Acetobacter sp. are commercially important bacteria that often form communities in natural fermentations, including food preparations, spoilage, and in the digestive tract of the fruit fly Drosophila melanogaster. Communities of these bacteria are widespread and prolific, despite numerous strain-specific auxotrophies, suggesting they have evolved nutrient interdependencies that regulate their growth. The use of a chemically-defined medium (CDM) supporting the growth of both groups of bacteria would facilitate the identification of the molecular mechanisms for the metabolic interactions between them. While numerous CDMs have been developed that support specific strains of lactobacilli or Acetobacter, there has not been a medium formulated to support both genera. We developed such a medium, based on a previous CDM designed for growth of lactobacilli, by modifying the nutrient abundances to improve growth yield. We further simplified the medium by substituting casamino acids in place of individual amino acids and the standard Wolfe's vitamins and mineral stocks in place of individual vitamins and minerals, resulting in a reduction from 40 to 8 stock solutions. These stock solutions can be used to prepare several CDM formulations that support robust growth of numerous lactobacilli and Acetobacters. Here, we provide the composition and several examples of its use, which is important for tractability in dissecting the genetic and metabolic basis of natural bacterial species interactions.


Assuntos
Acetobacter , Animais , Acetobacter/genética , Lactobacillus/fisiologia , Drosophila melanogaster , Bactérias , Vitaminas/metabolismo
7.
NPJ Biofilms Microbiomes ; 9(1): 65, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726290

RESUMO

Identification of the core functional microorganisms in food fermentations is necessary to understand the ecological and functional processes for making those foods. Wheat qu, which provides liquefaction and saccharifying power, and affects the flavor quality, is a key ingredient in ancient alcoholic huangjiu fermentation, while core microbiota of them still remains indistinct. In this study, metagenomics, metabolomics, microbial isolation and co-fermentation were used to investigate huangjiu. Although Aspergillus is usually regarded as core microorganism in wheat qu to initiate huangjiu fermentations, our metagenomic analysis showed that bacteria Saccharopolyspora are predominant in wheat qu and responsible for breakdown of starch and cellulose. Metabolic network and correlation analysis showed that Saccharopolyspora rectivirgula, Saccharopolyspora erythraea, and Saccharopolyspora hirsuta made the greatest contributions to huangjiu's metabolites, consisting of alcohols (phenylethanol, isoamylol and isobutanol), esters, amino acids (Pro, Arg, Glu and Ala) and organic acids (lactate, tartrate, acetate and citrate). S. hirsuta J2 isolated from wheat qu had the highest amylase, glucoamylase and protease activities. Co-fermentations of S. hirsuta J2 with S. cerevisiae HJ resulted in a higher fermentation rate and alcohol content, and huangjiu flavors were more similar to that of traditional huangjiu compared to co-fermentations of Aspergillus or Lactiplantibacillus with S. cerevisiae HJ. Genome of S. hirsuta J2 contained genes encoding biogenic amine degradation enzymes. By S. hirsuta J2 inoculation, biogenic amine content was reduced by 45%, 43% and 62% in huangjiu, sausage and soy sauce, respectively. These findings show the utility of Saccharopolyspora as a key functional organism in fermented food products.


Assuntos
Saccharopolyspora , Fermentação , Saccharopolyspora/genética , Saccharomyces cerevisiae , Aminoácidos , Celulose
8.
Nutr Res ; 118: 12-28, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37536013

RESUMO

Little is known about how combining a probiotic with prebiotic dietary fiber affects the ability of either biotic to improve health. We hypothesized that prebiotic, high-amylose maize type 2-resistant starch (RS) together with probiotic Lactiplantibacillus plantarum NCIMB8826 (LP) as a complementary synbiotic results in additive effects on the gut microbiota in diet-induced obese mice and other body sites. Diet-induced obese C57BL/6J male mice were fed a high-fat diet adjusted to contain RS (20% by weight), LP (109 cells every 48 hours), or both (RS+LP) for 6 weeks. As found for mice fed RS, cecal bacterial alpha diversity was significantly reduced in mice given RS+LP compared with those fed LP and high-fat controls. Similarly, both RS+LP and RS also conferred lower quantities of cecal butyrate and serum histidine and higher ileal TLR2 transcript levels and adipose tissue interleukin-6 protein. As found for mice fed LP, RS+LP-fed mice had higher colonic tissue TH17 cytokines, reduced epididymal fat immune and oxidative stress responses, reduced serum carnitine levels, and increased transcript quantities of hepatic carnitine palmitoyl transferase 1α. Notably, compared with RS and LP consumed separately, there were also synergistic increases in colonic glucose and hepatic amino acids as well antagonistic effects of LP on RS-mediated increases in serum adiponectin and urinary toxin levels. Our findings show that it is not possible to fully predict outcomes of synbiotic applications based on findings of the probiotic or the prebiotic tested separately; therefore, studies should be conducted to test new synbiotic formulations.


Assuntos
Dieta Hiperlipídica , Amido Resistente , Masculino , Camundongos , Animais , Camundongos Obesos , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Amido/farmacologia , Amido/metabolismo , Carnitina
9.
FEMS Microbiol Rev ; 47(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37188642

RESUMO

Extracellular electron transfer (EET) is a bioelectrochemical process performed by electrochemically active bacteria (EAB) found in host-associated environments, including plant and animal ecosystems and fermenting plant- and animal-derived foods. Through direct or mediated electron transfer pathways, certain bacteria use EET to enhance ecological fitness with host-impacting effects. In the plant rhizosphere, electron acceptors support the growth of EAB such as Geobacter, cable bacteria, and some clostridia that can result changing iron and heavy metal uptake by plants. In animal microbiomes, EET is associated with diet-derived iron in the intestines of soil-dwelling termites, earthworms, and beetle larvae. EET is also associated with the colonization and metabolism of some bacteria in human and animal microbiomes, such as Streptococcus mutans in the mouth, Enterococcus faecalis and Listeria monocytogenes in the intestine, and Pseudomonas aeruginosa in the lungs. During the fermentation of plant tissues and bovine milk, lactic acid bacteria like Lactiplantibacillus plantarum and Lactococcus lactis may use EET to increase their growth and food acidification, as well as decrease environmental oxidation-reduction potential. Thus, EET is likely an important metabolic pathway for host-associated bacteria and has implications for ecosystem function, health and disease, and biotechnological applications.


Assuntos
Ecossistema , Elétrons , Animais , Humanos , Transporte de Elétrons , Bactérias/metabolismo , Ferro/metabolismo
10.
J Nutr ; 153(4): 1143-1149, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822397

RESUMO

BACKGROUND: Live dietary microbes have been hypothesized to contribute to human health but direct evidence is lacking. OBJECTIVES: This study aimed to determine whether the dietary consumption of live microbes is linked to improved health outcomes. METHODS: Data from the NHANES 2001-2018 were used to assess microbial intake and their adjusted associations with selected physiological parameters (e.g., blood pressure, anthropometric measures, and biomarkers) among adults aged 19 y and older. Regression models were constructed to assess the microbial intake with each physiological parameter and adjusted for demographics and other covariates. Microbial intake was assessed as both a continuous variable and a 3-level categorical variable. Fermented foods were assessed in a separate model. RESULTS: In continuous models, an additional 100-g intake of microbe-containing foods was associated with a lower systolic blood pressure (regression coefficient: -0.331; 95% CI: -0.447, -0.215 mm Hg), C-reactive protein (-0.013; 95% CI: -0.019, -0.008 mg/dL), plasma glucose -0.347; 95% CI: -0.570, -0.124 mg/dL), plasma insulin (-0.201; 95% CI: -0.304, -0.099 µU/mL), triglyceride (-1.389; 95% CI: -2.672, -0.106 mg/dL), waist circumference (-0.554; 95% CI: -0.679, -0.428 cm), and BMI -0.217; 95% CI: -0.273, -0.160 kg/m2) levels and a higher level of high density lipoprotein cholesterols (0.432; 95% CI: 0.289, 0.574 mg/dL). Patterns were broadly similar when microbial intake was assessed categorically and when fermented foods were assessed separately. CONCLUSIONS: To our knowledge, this study is the first to quantify, in a nationally representative data set of American adults and using stable sets of covariates in the regression models, the adjusted associations of dietary intakes of live microbes with a variety of outcomes, such as anthropometric measures, biomarkers, and blood pressure levels. Our findings suggest that foods with higher microbial concentrations are associated with modest health improvements across a range of outcomes.


Assuntos
Alimentos Fermentados , Adulto , Humanos , Estados Unidos , Inquéritos Nutricionais , Índice de Massa Corporal , Biomarcadores , Avaliação de Resultados em Cuidados de Saúde
11.
PLoS One ; 17(9): e0267992, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36107863

RESUMO

Although bacterial detection by 16S rRNA gene amplicon DNA sequencing is a widely-applied technique, standardized methods for sample preparation and DNA extraction are needed to ensure accuracy, reproducibility, and scalability for automation. To develop these methods for bovine bulk milk, we assembled and tested a bacterial cell mock community (BCMC) containing bacterial species commonly found in milk. The following protocol variations were examined:: BCMC enumeration (colony enumeration or microscopy), sample volume (200 µl to 30 ml), sample storage condition (frozen in PBS or 25% glycerol or exposure to freeze-thaw cycles), cell lysis method (bead-beating, vortex, enzymatic), and DNA extraction procedure (MagMAX Total, MagMAX CORE, and MagMAX Ultra 2.0, with and without either Proteinase K or RNase A). Cell enumeration by microscopy was more accurate for quantification of the BCMC contents. We found that least 10 mL (≥ 104 cells in high quality milk) is needed for reproducible bacterial detection by 16S rRNA gene amplicon DNA sequencing, whereas variations in storage conditions caused minor differences in the BCMC. For DNA extraction and purification, a mild lysis step (bead-beating for 10 s at 4 m/s or vortexing at 1800 rpm for 10 s) paired with the MagMAX Total kit and Proteinase K digestion provided the most accurate representation of the BCMC. Cell lysis procedures conferred the greatest changes to milk microbiota composition and these effects were confirmed to provide similar results for commercial milk samples. Overall, our systematic approach with the BCMC is broadly applicable to other milk, food, and environmental samples therefore recommended for improving accuracy of culture-independent, DNA sequence-based analyses of microbial composition in different habitats.


Assuntos
Microbiota , Leite , Animais , Bactérias , Bovinos , DNA Bacteriano/genética , Endopeptidase K , Glicerol , Microbiota/genética , Leite/microbiologia , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes , Ribonuclease Pancreático
12.
Appl Environ Microbiol ; 88(15): e0066622, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35852360

RESUMO

The importance of individual nutrients for microbial strain robustness and coexistence in habitats containing different members of the same species is not well understood. To address this for Lactiplantibacillus plantarum in food fermentations, we performed comparative genomics and examined the nutritive requirements and competitive fitness for L. plantarum strains B1.1 and B1.3 isolated from a single sample of teff injera fermentation batter. Compared to B1.1 and other L. plantarum strains, B1.3 has a smaller genome, limited biosynthetic capacities, and large mobilome. Despite these differences, B1.3 was equally competitive with B1.1 in a suspension of teff flour. In commercially sourced, nutrient-replete MRS (cMRS) medium, strain B1.3 reached 3-fold-higher numbers than B1.1 within 2 days of passage. Because B1.3 growth and competitive fitness were poor in mMRS medium (here called mMRS), a modified MRS medium lacking beef extract, we used mMRS to identify nutrients needed for robust B1.3 growth. No improvement was observed when mMRS was supplemented with nucleotides, amino acids, vitamins, or monovalent metals. Remarkably, the addition of divalent metal salts increased the growth rate and cell yields of B1.3 in mMRS. Metal requirements were confirmed by inductively coupled plasma mass spectrometry, showing that total B1.3 intracellular metal concentrations were significantly (up to 2.7-fold) reduced compared to B1.1. Supplemental CaCl2 conferred the greatest effect, resulting in equal growth between B1.1 and B1.3 over five successive passages in mMRS. Moreover, calcium supplementation reversed a B1.3 strain-specific, stationary-phase, flocculation phenotype. These findings show how L. plantarum calcium requirements affect competitive fitness at the strain level. IMPORTANCE Ecological theory states that the struggle for existence is stronger between closely related species. Contrary to this assertion, fermented foods frequently sustain conspecific individuals, in spite of their high levels of phylogenetic relatedness. Therefore, we investigated two isolates of Lactiplantibacillus plantarum, B1.1 and B1.3, randomly selected from a single batch of teff injera batter. These strains spanned the known genomic and phenotypic range of the L. plantarum species, and in laboratory culture medium used for strain screening, B1.3 exhibited poor growth and was outcompeted by the more robust strain B1.1. Nonetheless, B1.1 and B1.3 were equally competitive in teff flour. This result shows how L. plantarum has adapted for coexistence in that environment. The capacity for the single macronutrient calcium to restore B1.3 competitive fitness in laboratory culture medium suggests that L. plantarum intraspecies diversity found in food systems is fine-tuned to nutrient requirements at the strain level.


Assuntos
Alimentos Fermentados , Lactobacillus plantarum , Probióticos , Animais , Cálcio/metabolismo , Bovinos , Fermentação , Lactobacillus plantarum/metabolismo , Filogenia
13.
J Nutr ; 152(7): 1729-1736, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35583208

RESUMO

BACKGROUND: Consuming live microbes in foods may benefit human health. Live microbe estimates have not previously been associated with individual foods in dietary databases. OBJECTIVES: We aimed to estimate intake of live microbes in US children (aged 2-18 y) and adults (≥19 y) (n = 74,466; 51.2% female). METHODS: Using cross-sectional data from the NHANES (2001-2018), experts assigned foods an estimated level of live microbes per gram [low (Lo), <104 CFU/g; medium (Med), 104-107 CFU/g; or high (Hi), >107 CFU/g]. Probiotic dietary supplements were also assessed. The mean intake of each live microbe category and the percentages of subjects who ate from each live microbe category were determined. Nutrients from foods with live microbes were also determined using the population ratio method. Because the Hi category comprised primarily fermented dairy foods, we also looked at aggregated data for Med or Hi (MedHi), which included an expanded range of live microbe-containing foods, including fruits and vegetables. RESULTS: Our analysis showed that 52%, 20%, and 59% of children/adolescents, and 61%, 26%, and 67% of adults, consumed Med, Hi, or MedHi foods, respectively. Per capita intake of Med, Hi, and MedHi foods was 69, 16, and 85 g/d for children/adolescents, and 106, 21, and 127 g/d for adults, respectively. The proportion of subjects who consumed live microbes and overall per capita intake increased significantly over the 9 cycles/18-y study period (0.9-3.1 g/d per cycle in children across categories and 1.4 g/d per cycle in adults for the Med category). CONCLUSIONS: This study indicated that children, adolescents, and adults in the United States steadily increased their consumption of foods with live microbes between the earliest (2001-2002) and latest (2017-2018) survey cycles. Additional research is needed to determine the relations between exposure to live microbes in foods and specific health outcomes or biomarkers.


Assuntos
Dieta , Verduras , Adolescente , Adulto , Criança , Estudos Transversais , Ingestão de Alimentos , Ingestão de Energia , Feminino , Humanos , Masculino , Inquéritos Nutricionais , Estados Unidos
14.
Elife ; 112022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35147079

RESUMO

Energy conservation in microorganisms is classically categorized into respiration and fermentation; however, recent work shows some species can use mixed or alternative bioenergetic strategies. We explored the use of extracellular electron transfer for energy conservation in diverse lactic acid bacteria (LAB), microorganisms that mainly rely on fermentative metabolism and are important in food fermentations. The LAB Lactiplantibacillus plantarum uses extracellular electron transfer to increase its NAD+/NADH ratio, generate more ATP through substrate-level phosphorylation, and accumulate biomass more rapidly. This novel, hybrid metabolism is dependent on a type-II NADH dehydrogenase (Ndh2) and conditionally requires a flavin-binding extracellular lipoprotein (PplA) under laboratory conditions. It confers increased fermentation product yield, metabolic flux, and environmental acidification in laboratory media and during kale juice fermentation. The discovery of a single pathway that simultaneously blends features of fermentation and respiration in a primarily fermentative microorganism expands our knowledge of energy conservation and provides immediate biotechnology applications.


Bacteria produce the energy they need to live through two processes, respiration and fermentation. While respiration is often more energetically efficient, many bacteria rely on fermentation as their sole means of energy production. Respiration normally depends on the presence of small soluble molecules, such as oxygen, that can diffuse inside the cell, but some bacteria can use metals or other insoluble compounds found outside the cell to perform 'extracellular electron transfer'. Lactic acid bacteria are a large group of bacteria that have several industrial uses and live in many natural environments. These bacteria survive using fermentation, but they also carry a group of genes needed for extracellular electron transfer. It is unclear whether they use these genes for respiration or if they have a different purpose. Tejedor-Sanz, Stevens et al. used a lactic acid bacterium called Lactiplantibacillus plantarum to study whether and how this group of bacteria use extracellular electron transfer. Analysis of L. plantarum and its effect on its surroundings showed that these bacteria use a hybrid process to produce energy: the cells use aspects of extracellular respiration to increase the yield and efficiency of fermentation. Combining these two approaches may allow L. plantarum to adapt to different environments and grow faster, allowing it to compete against other species. Tejedor-Sanz, Stevens et al. provide new information on a widespread group of bacteria that are often used in food production and industry. The next step will be to understand how the hybrid system is controlled and how it varies among species. Understanding this process could result in new biotechnologies and foods that are healthier, produce less waste, or have different tastes and textures.


Assuntos
Transporte de Elétrons/fisiologia , Fermentação , Lactobacillaceae/metabolismo , Albinismo Oculocutâneo , Biomassa , Brassica/química , Sucos de Frutas e Vegetais , Lactobacillaceae/enzimologia , Lactobacillaceae/genética , Lactobacillales/metabolismo , Lipoproteínas , NADH Desidrogenase/metabolismo , Fosforilação
15.
Microbiome Res Rep ; 1(1): 5, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38089063

RESUMO

Reports on fermented, animal-sourced foods made by Inuit around the circumpolar North have lacked consideration for their unique microbiota and the geo-socio-cultural contexts in which they are made, often resulting in reinforced negative stereotypes. Deficit-based approaches to studying Inuit fermented foods overlook the fact that they have long been considered healthy and integral to Inuit diets. Inuit have deep knowledge on the harvesting, preparation, sharing, and consumption of fermented foods that research efforts must learn from and acknowledge. Our preliminary research into Inuit animal-sourced fermented foods expands current knowledge about the microorganisms needed to make them, and points to a potential to understand how these and other fermented foods impact the human gut microbiome. We provide recommendations for microbiological research on Inuit fermented foods that centers Inuit knowledge within the specific geographic, social, and cultural contexts in which these foods are made.

16.
PeerJ ; 9: e11881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447623

RESUMO

Contagious bovine mastitis caused by Mycoplasma bovis and other Mycoplasma species including Mycoplasma californicum, Mycoplasma bovigenitalium, Mycoplasma alkalescens, Mycoplasma arginini, and Mycoplasma canadense is an economical obstacle affecting many dairy herds throughout California and elsewhere. Routine bacteriological culture-based assays for the pathogens are slow and subject to false-positive results due to the presence of the related, non-pathogenic species Acholeplasma laidlawii. To address the need for rapid and accurate detection methods, a new TaqMan multiplex, quantitative real-time PCR (qPCR) assay was developed that targets the 16S rRNA gene of Mycoplasma, rpoB gene of M. bovis, and the 16S to 23S rRNA intergenic transcribed spacer (ITS) region of A. laidlawii. qPCR amplification efficiency and range of detection were similar for individual assays in multiplex as when performed separately. The multiplex assay was able to distinguish between M. bovis and A. laidlawii as well as detect Mycoplasma spp. collectively, including Mycoplasma californicum, Mycoplasma bovigenitalium, Mycoplasma canadense, Mycoplasma arginini and Mycoplasma alkalescens. In milk, the lower limit of detection of M. bovis, M. californicum, and A. laidlawii with the multiplex assay was between 120 to 250 colony forming units (CFU) per mL. The assay was also able to simultaneously detect both M. bovis and A. laidlawii in milk when present in moderate (103 to 104 CFU/mL) to high (106 to 107 CFU/mL) quantities. Compared to laboratory culture-based methods, the multiplex qPCR diagnostic specificity (Sp) was 100% (95% CI [86.8-100]; n = 26) and diagnostic sensitivity (Se) was 92.3% (95% CI [74.9-99.1]; n = 26) for Mycoplasma species in milk samples collected from California dairy farms. Similarly, the Sp was 100% (95% CI [90.5-100]; n = 37) and Se was 93.3% (95% CI [68.1-99.8]; n = 15) for M. bovis. Our assay can detect and distinguish among M. bovis, other prevalent Mycoplasma spp., and non-pathogenic Acholeplasma laidlawii for effective identification and control of mycoplasma mastitis, ultimately supporting dairy cattle health and high-quality dairy products in California.

17.
Nutrients ; 13(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202877

RESUMO

Glucosamine (GLU) is a natural compound found in cartilage, and supplementation with glucosamine has been shown to improve joint heath and has been linked to reduced mortality rates. GLU is poorly absorbed and may exhibit functional properties in the gut. The purpose of this study was to examine the impact of glucosamine on gastrointestinal function as well as changes in fecal microbiota and metabolome. Healthy males (n = 6) and females (n = 5) (33.4 ± 7.7 years, 174.1 ± 12.0 cm, 76.5 ± 12.9 kg, 25.2 ± 3.1 kg/m2, n = 11) completed two supplementation protocols that each spanned three weeks separated by a washout period that lasted two weeks. In a randomized, double-blind, placebo-controlled, crossover fashion, participants ingested a daily dose of GLU hydrochloride (3000 mg GlucosaGreen®, TSI Group Ltd., Missoula, MT, USA) or maltodextrin placebo. Study participants completed bowel habit and gastrointestinal symptoms questionnaires in addition to providing a stool sample that was analyzed for fecal microbiota and metabolome at baseline and after the completion of each supplementation period. GLU significantly reduced stomach bloating and showed a trend towards reducing constipation and hard stools. Phylogenetic diversity (Faith's PD) and proportions of Pseudomonadaceae, Peptococcaceae, and Bacillaceae were significantly reduced following GLU consumption. GLU supplementation significantly reduced individual, total branched-chain, and total amino acid excretion, with no glucosamine being detected in any of the fecal samples. GLU had no effect on fecal short-chain fatty acids levels. GLU supplementation provided functional gut health benefits and induced fecal microbiota and metabolome changes.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Glucosamina/administração & dosagem , Adulto , Estudos Cross-Over , Defecação/efeitos dos fármacos , Método Duplo-Cego , Fezes/química , Fezes/microbiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Filogenia , Projetos Piloto , Polissacarídeos/administração & dosagem
18.
Microb Biotechnol ; 14(5): 1990-2008, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34171185

RESUMO

Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) is a lactic acid bacteria species found on plants that is essential for many plant food fermentations. In this study, we investigated the intraspecific phenotypic and genetic diversity of 13 L. plantarum strains isolated from different plant foods, including fermented olives and tomatoes, cactus fruit, teff injera, wheat boza and wheat sourdough starter. We found that strains from the same or similar plant food types frequently exhibited similar carbohydrate metabolism and stress tolerance responses. The isolates from acidic, brine-containing ferments (olives and tomatoes) were more resistant to MRS adjusted to pH 3.5 or containing 4% w/v NaCl, than those recovered from grain fermentations. Strains from fermented olives grew robustly on raffinose as the sole carbon source and were better able to grow in the presence of ethanol (8% v/v or sequential exposure of 8% (v/v) and then 12% (v/v) ethanol) than most isolates from other plant types and the reference strain NCIMB8826R. Cell free culture supernatants from the olive-associated strains were also more effective at inhibiting growth of an olive spoilage strain of Saccharomyces cerevisiae. Multi-locus sequence typing and comparative genomics indicated that isolates from the same source tended to be genetically related. However, despite these similarities, other traits were highly variable between strains from the same plant source, including the capacity for biofilm formation and survival at pH 2 or 50°C. Genomic comparisons were unable to resolve strain differences, with the exception of the most phenotypically impaired and robust isolates, highlighting the importance of utilizing phenotypic studies to investigate differences between strains of L. plantarum. The findings show that L. plantarum is adapted for growth on specific plants or plant food types, but that intraspecific variation may be important for ecological fitness and strain coexistence within individual habitats.


Assuntos
Lactobacillales , Lactobacillus plantarum , Olea , Fermentação , Microbiologia de Alimentos , Lactobacillus plantarum/genética , Tipagem de Sequências Multilocus
19.
Food Funct ; 12(7): 2886-2900, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33877244

RESUMO

The effects of arabinoxylan (AX)-rich rye bran based diet (RB) and antibiotics on digestion, fermentation and short-chain fatty acids (SCFA) absorption were studied compared with an iso-dietary fibre (DF) cellulose based diet (CEL). Thirty female pigs (body weight 72.5 ± 3.9 kg) were fed a standard swine diet in week 1, CEL as wash-out for bran-associated bioactive components in week 2 and then divided into 3 groups fed either the CEL (n = 10) or RB (n = 20) for 2 weeks, where 10 pigs from RB had daily intramuscular antibiotic injections (RB+) and the other 10 pigs were untreated (RB-) in week 4. In RB, the degradation of AX mainly occurred in caecum and proximal colon (P < 0.01) and to a higher extent than cellulose, which on the other hand, irrespective of antibiotic treatment, was less degraded in the RB groups than in the CEL (P < 0.01). The apparent digestibility of fat and protein in the distal small intestine was lower for RB than CEL (P < 0.05), the protein digestibility remained lower in most of the colon, and the digestibility was not affected by treatment with antibiotics. The colonic concentrations of SCFA, acetate and propionate as well as the butyrate concentration in the distal colon were lower with the RB treatments compared with CEL (P < 0.01). Caecal butyrate concentrations were on the other hand higher, and a significant reduction was seen with antibiotic treatment (P < 0.001). The daily net absorption of SCFA and acetate was lower with RB than with CEL (P < 0.01). In conclusion, RB resulted in different DF degradation processes and SCFA production compared with CEL, whereas antibiotic treatment had marginal effects on the intestinal DF degradation but hampered butyrate production.


Assuntos
Antibacterianos/farmacologia , Fibras na Dieta/administração & dosagem , Digestão/efeitos dos fármacos , Ácidos Graxos Voláteis/farmacocinética , Fermentação/efeitos dos fármacos , Secale , Ração Animal , Animais , Butiratos/metabolismo , Celulose/administração & dosagem , Dieta , Ácidos Graxos Voláteis/biossíntese , Feminino , Absorção Intestinal/efeitos dos fármacos , Sus scrofa , Xilanos/administração & dosagem
20.
Nutrients ; 13(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671147

RESUMO

The majority of research on the physiological effects of dietary resistant starch type 2 (RS2) has focused on sources derived from high-amylose maize. In this study, we conduct a double-blind, randomized, placebo-controlled, crossover trial investigating the effects of RS2 from wheat on glycemic response, an important indicator of metabolic health, and the gut microbiota. Overall, consumption of RS2-enriched wheat rolls for one week resulted in reduced postprandial glucose and insulin responses relative to conventional wheat when participants were provided with a standard breakfast meal containing the respective treatment rolls (RS2-enriched or conventional wheat). This was accompanied by an increase in the proportions of bacterial taxa Ruminococcus and Gemmiger in the fecal contents, reflecting the composition in the distal intestine. Additionally, fasting breath hydrogen and methane were increased during RS2-enriched wheat consumption. However, although changes in fecal short-chain fatty acid (SCFA) concentrations were not significant between control and RS-enriched wheat roll consumption, butyrate and total SCFAs were positively correlated with relative abundance of Faecalibacterium, Ruminoccocus, Roseburia, and Barnesiellaceae. These effects show that RS2-enriched wheat consumption results in a reduction in postprandial glycemia, altered gut microbial composition, and increased fermentation activity relative to wild-type wheat.


Assuntos
Glicemia/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Amido Resistente/classificação , Triticum/química , Adulto , Bactérias/classificação , Bactérias/genética , Estudos Cross-Over , Método Duplo-Cego , Ácidos Graxos Voláteis/química , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Amido Resistente/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...